

# A Progress Report on The AFREF Project and It's Potential to Support Development in Africa

Richard Wonnacott

Space Geodesy Workshop

Matjiesfontein

13-14 November 2007



## **Overview**

- Background
- Rationale
- Objectives
- Progress
- Institutional acceptance
- Structure
- Present situation
- Comments and concerns
- Way Forward
- Conclusion



# **Background**

- Fundamental point of departure for projects, services or products requiring geo-spatial information is a uniform & reliable co-ordinate reference frame.
- Over 50 countries in Africa each with their own system and frame and some with 2 or more systems.
- Although there are many areas of conflict there are also areas where peace has been restored and require a lot of development.
- It is known that many private commercial enterprises are setting up own reference frames particularly in the oil industry.
- AFREF is, therefore, an African initiative to unify reference frames based on the ITRF through network of GPS base stations at spacing such the users will be at most within ~1000 km of a base station.



#### Rationale

- Surveying & Mapping
- Security
  - Unique international boundary definition
- Science
  - Atmospheric research
  - Geophysics research
- Disaster mitigation
  - 59% of disasters in Africa are hydro-meteorological in nature
    - drought and flooding (climate monitoring & weather prediction)
- Infrastructure planning & development
- Gap in global coverage & contribution to Global Geodetic Observing System part of GEO etc



# **Objectives of AFREF 1**

- To determine a continental reference system for Africa consistent and homogeneous with the global reference frame of the ITRF as a basis for national 3d reference networks.
- To realize a unified vertical datum and to support efforts to establish a precise African geoid.
- To establish continuous, permanent GNSS base stations at a spacing such that the users will be within 1000km of a base station and that data is freely available to all nations.



# **Objectives of AFREF 2**

- To determine the relationship between the existing national reference frames and the ITRF to preserve legacy information based on existing frames.
- To provide a sustainable development environment for technology transfer so that these activities will enhance the national networks and other applications.
- Assist in establishing in-country expertise for implementation, operation, processing and analysis of modern geodetic techniques, primarily GNSS.



- Cape Town March 2000:
  - Global Spatial Data Infrastructure (GSDI)
  - Need expressed for unified reference frame
- Tunisia May 2000:
  - Meeting held to North African co-ordinate systems
  - 6 countries attended
- Cape Town March 2001:
  - to gauge level of interest among NMO's in region
  - 8 countries attended and supported project
  - IAG/IGS, EUREF, NIMA supported project
  - Meeting requested that project go under IAG banner



- Lusaka July 2002
  - UNOOSA / USA sponsored series of workshops on Use and Applications of GNSS:
  - Large number of African countries represented
  - One of the outcomes was recommendation to
    - Establish a continental reference for Africa or AFREF consistent with ITRF
- Windhoek Dec 2002
  - 8 Southern and East African countries represented
  - Representative from UN ECA CODI also present
  - Prepared what has become known as "Windhoek Declaration"



- Addis Ababa August 2004:
  - UNECA CODI Accepted "Windhoek Declaration"
  - Established a Working Group on AFREF
  - Nominated a Steering Committee
- Other meetings
  - Nairobi October 2004
  - Cairo April 2005 FIG Working Week
  - Accra March 2006 FIG Regional Conference
- Cape Town July 2006:
  - Technical Workshop
  - Co-sponsored by 6 organizations incl. IAG, UNAVCO, UNOOSA
  - 4 days including visits
  - ~40 delegates and 15 presenters



- Nairobi August 2007:
  - Technical Workshop
  - Organized by RCMRD in conjunction with the University of Lisbon, the University of Beira-Interior (Portugal) and Hart RAO
  - Attended by representatives from 8 countries mainly from East Africa
  - Dealt with GNSS reference stations and processing of GNSS data
- Nigeria September 2007
  - AFREF stakeholders forum



# Institutional Acceptance 1

- UN ECA CODI (Committee on Development information)
  - Have adopted the Windhoek Declaration
  - Have accepted the importance of AFREF
  - Created a Working Group to deal specifically with AFREF
- UN OOSA (UN Office for Outer Space Affairs)
  - Have recognized importance of AFREF for variety of applications
  - Supported the Cape Town workshop
- IAG (International Association of Geodesy)
  - Have recognized importance of AFREF and have committed support
  - Have created structures to co-ordinate project and provide technical assistance expertise
  - Supported the Cape Town workshop

# Institutional Acceptance 2

- IGS (International GNSS Service)
  - Has strong commitment to support AFREF
  - Supported the Cape Town workshop
- FIG (International Federation of Surveyors)
  - Sponsored workshops in Cairo and Accra
- UNAVCO (University NAVSTAR Consortium Incorporated)
  - Have strongly supported the project
  - Supported the Cape Town workshop
- NEPAD (New Partnership for Africa's Development)
  - Political acceptance
  - Access to funding possibly easier



#### Structure 1

#### The structure reflects the broad concepts of AFREF that:

- It is to be designed, managed and executed from within African;
- It is to be organized on a regional basis;
- It is to be executed at the national level; and
- Technical expertise and support will come from the international geodetic community such as IAG, IGS etc.



## Structure 2





- Up to about 2005 there were about 15 IGS stations in Africa
  - CDDIS gave about 30 stations
    - Some of these in clusters
    - Some not operational
    - Some appear to be experimental eg GLONASS only with very little data
- There were others which have been installed at academic institutions or airports but are not registered as IGS stations.
  - Many of these stations need little or no upgrade to meet IGS standards.
  - South Africa has network of 44 continuous base stations.
- There are a number of contractors setting up own local systems such as in oil industry.



# Number of activities underway to install permanent base stations or move towards ITRF

Algeria Angola

Benin Botswana

Cameroon Egypt

**Ethiopia** Ghana

Kenya Lesotho

Malawi Moroco

Mozambique Namibia

Nigeria Rwanda

South Africa Swaziland

Tanzania Tunisia

**Uganda** Zambia



Installed and operational IGS stations ~2005





Some known installed and planned GNNS station Sept 2007

(Not all stations shown for clarity)

- Installed
- Planned



#### Concerns & Comments 1

#### Funding for infrastructure

- Would appear to be funds available but how does one access such funds? (eg NASA)
- Everyone wants ot participate but not open wallets
- Seem to be able to get money for workshops etc
- Need to prepare list of possible that meet certain criteria

#### Political Buy-in

- Get AFREF recognised as NEPAD project
- May facilitate fund raising

#### Co-ordination of efforts

- There are a number of groups installing or are prepared to install
- Lack of information on these initiatives
- Result in duplication of effort

#### Concerns & Comments 2

- Don't loose sight of aims & objectives of AFREF
  - Groups installing for specific scientific reasons in name of AFREF but not keeping primary objectives of AFREF in mind.
  - NMO's excluded or superficially included.

#### IGS & AFREF

- Supported various workshop
- Assisted with preparation of CfP
- Obtained financial support from UNAVCO for Cape Town Workshop July 2006
- Highlight importance of AFREF at every opportunity

#### Future IGS involvement

 Point of contact with "assisting agencies" – both technical and financial



# **Way Forward**

- Publicity and Political Support:
  - Convince NMO's, Govts and International Agencies of importance AFREF – NEPAD's political clout
  - Can't plan or do things unless you know where you are!!
- Steering Committee has prepared "Call for Participation" which has been distributed to:
  - African National Mapping Organizations (NMO's)
  - International Organisations
  - Funding agencies
  - Appropriate equipment maunfacturers and vendors
    - Leica & Trimble have donated receivers
- Effort to go into getting commitment from NMO's and other role players.



#### Conclusion

- AFREF is an essential element for Africa's Development.
- Apart from the geodetic aspects, the AFREF infrastructure of permanent GNSS base stations has enormous potential for scientific research.
- The project is starting to gain momentum but needs co-ordination of effort.



# **THANK YOU**

http://geoinfo.uneca.org/afref

# **Extra Slides**



#### **Practicalities 1**

- Capacity
  - Workshops
    - Cape Town Workshop cost ~\$55000 excluding contribution from home organizations of presenters (~40 delegates & 15 presenters)
  - Distance learning???
- Telecommunication
  - Wide range of telecom technologies
  - Variable monthly costs ~\$30 (internet) \$300 (diginet)
  - Reliability questionable
- Power
  - Range of power sources
    - National power grid
    - Solar power
    - Wind power
    - Diesel generation (ie local generator)
  - Reliability questionable



## **Practicalities 2**

- Cost
  - Permanent Stations
    - Capital

Receivers, antennas and peripheral equipment
 Control station hardware plus software
 \$ 30000/station
 \$ 125000/centre

Running costs

 Telecommunications 50 stations at average \$165/ station/ month

- Ongoing maintenance

» Total estimated running costs

~\$100000 / year

~\$ 50000 / year

~\$150000 / year

- Redundancy of equipment ??????
- The above excludes cost of any human resources
- Workshops
  - ~\$55000/ workshop of 40 delegates
- Publications
  - Reports, handbooks etc 2500 documents @ ~\$8each ~\$ 20000 per publication



# Scientific Applications 1

- Atmospheric research
  - Climate & Weather
    - Estimation of precipitable water vapour from network of GNSS stations in South Africa





# Scientific Applications 2

- Atmospheric research
  - Space weather
    - Ionospheric mapping of variation of annual TEC over South Africa from network of GNSS base stations





Thanks to B Opperman of Hermanus Magnetic Observatory for plots



# Scientific Applications 3

- Geophysics research
  - Plate motions
    - Plate motion estimates in South Africa from network of GNSS base stations



C.J.H. Hartnady, E. Calais & R. Wonnacott (2007): "ITRF2000 velocity field from the South African TrigNet GPS array and the African GNSS network: Implications for Nubia-(Rovuma-Lwandle-)Somalia plate motions" East African Rift Conference, Kampala