Conceptual design of the optical subsystem of the proposed Lunar Laser Ranger

R. C. Botha^{1,2,3}, C. Bollig³, W. L. Combrinck¹

¹Space Geodesy Programme, HartRAO, P. O. Box 443, Krugersdorp, 1740

²Laser Research Institute, Stellenbosch University, P/Bag X1, Matieland, 7602

³National Laser Centre, CSIR, P.O. Box 395, Pretoria, 0001

2nd Space Geodesy Workshop, Matjiesfontein, 12 - 15 November 2007

Outline

Conceptual optical subsystem design- Lunar Laser Ranger

- Background- Lunar Laser Ranging
- Conceptual Laser design, first results
- Conceptual design of optical subsystem
 - 1. Overview of dual telescope system
 - 2. Outgoing path design
 - 3. Receive path design
 - 4. Alignment
- Conclusion

© CSIR 2007

GOAL: Lunar Laser Ranging

ravitational constant G.

Laser Ranging: Link and Error budget

Link Budget from radar equation:

$$N_{pe} = \eta_q E_T \frac{\lambda}{hc} \eta_T G_T \sigma_{Sat} (\frac{1}{4\pi R^2})^2 A_T \eta_R T_A^2 T_C^2$$

Transmit and receive-path efficiency

Source of error	RMS Error (ps)	One-way error (mm)
Leading edge variation of laser pulse	2 - 4	0.3 – 0.6
Laser pulse width	10 - 30	1.5 – 4.5
Jitter: Start detector	2 - 5	0.3 – 0.8
Jitter: Return detector	6 - 50	0.9 – 7.5
Time stability of clock	5 – 10	0.7 – 1.5
Calibration	2 - 4	0.3 – 0.6

© CSIR 2007

www.csir.co.za

our future through science

Differences between SLR and LLR

Conceptual Laser Design

www.csir.co.za

General Q-switched mode-locked parameters:

- Several microjoule per pulse
- Picosecond pulse length regime
- 100's of MHz pulse repetition frequency

© CSIR 2007

Output Parameters: Prototype

Output obtained from Q-switched laser:

- 12W green- 527 nm
- Pulse Rep rate: 10 kHz
- Pulse length: ~ 150 ns
- Pulse energy: ~ 2 mJ

Conceptual Laser Design

How do we get from 100's of MHz low-energy to kHz high-energy in modelocked Q-switched lasers?

Seed Laser

Final Output

Steps:

- 1. Pulse Selection
- 2. Amplification

Proposal for new optical subsystem

- Compact, light-weight diode-pumped laser mounted onto telescope
 - Pump diodes separately with light delivered to laser through multi-mode fibres
 - Very good beam quality
 - Own smaller telescope for outgoing beam (e.g. ~40 cm diameter)
 - High-rep-rate operation
- Adaptive optics to reduce laser divergence and field of view independent of seeing conditions.
 - Laser itself creates guide star through time gating to return from higher atmosphere
 - With a 30 cm outgoing beam, a divergence of ~0.5 arcsec could be achieved.
 - This gives a factor 4 improvement compared to 1 arcsec, much more compared to most current systems.
 - The reduced field of view would reduce noise by a similar factor
- Automatic pointing system ensures optimum overlap of laser and telescope field of view.

© CSIR 2007 www.csir.co.za

Proposed system: outgoing laser

- Laser with good beam quality
- Time-gated detection of wave front through laser telescope
- Adaptive optics to correct laser divergence
- Very low laser divergence
- Factor 3 to 10 improvement of intensity on moon

Proposed system: receiving

- Time-gated detection of wave front through main telescope
- Adaptive optics to improve receiving resolution
- Can significantly reduce field of view
- Factor 3 to 10 reduction of noise

Proposed system: pointing and alignment

- Tip-tilt mirror to actively fine-adjust pointing to retro-reflector
- Time-gated detection of laser direction from atmospheric far-field scattering
- Tip-tilt mirror to adjust laser pointing to main telescope
- Always perfect alignment of laser beam to main telescope

Conclusion

 Upsizing of current technology will not allow millimeter level accuracy

•A new laser design for better beam quality is necessary

•A novel 'dual-telescope' system is a feasible option

•Adaptive optics will correct for transmit and receive path efficiencies by lowering final beam divergence

 Automatic alignment and pointing control will significantly reduce system errors and increase accuracy

Thank you

