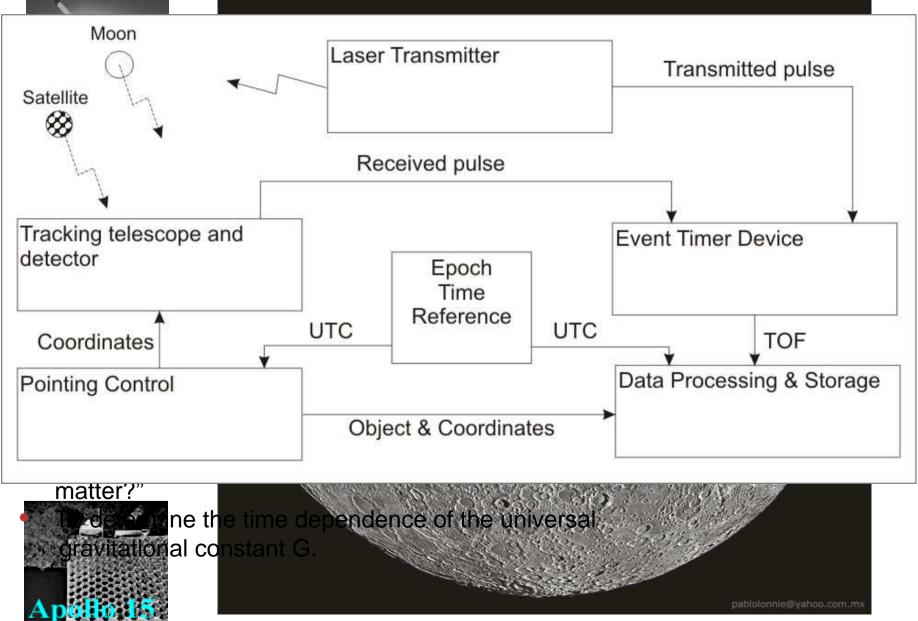
Current Status: Lunar Laser Ranging

R. C. Botha^{1,2,3}, W. L. Combrinck¹

3rd Matjiesfontein Workshop: Technical discussions

¹Space Geodesy Programme, HartRAO, P. O. Box 443, Krugersdorp, 1740 ²Laser Research Institute, Stellenbosch University, P/Bag X1, Matieland, 7602 ³National Laser Centre, CSIR, P.O. Box 395, Pretoria, 0001



Outline

- Background- Lunar Laser Ranging
- Overall system parameters
- Laser Development and ideas
- Telescope

GOAL: Lunar Laser Ranging

Laser Ranging: Link and Error budget

Link Budget from radar equation:

$$N_{pe} = \eta_q E_T \frac{\lambda}{hc} \eta_T G_T \sigma_{Sat} (\frac{1}{4\pi R^2})^2 A_T \eta_R T_A^2 T_C^2$$

Transmit and receive-path efficiency

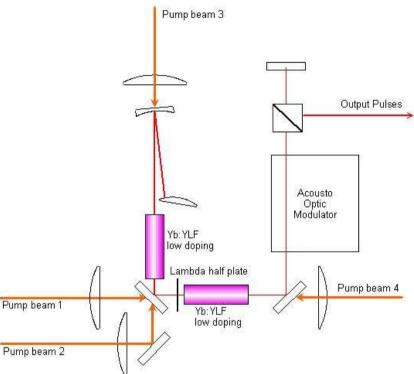
Source of error	RMS Error (ps)	One-way error (mm)
Leading edge variation of laser pulse	2 - 4	0.3 – 0.6
Laser pulse width	10 - 30	1.5 – 4.5
Jitter: Start detector	2 - 5	0.3 – 0.8
Jitter: Return detector	6 - 50	0.9 – 7.5
Time stability of clock	5 – 10	0.7 – 1.5
Calibration	2 - 4	0.3 – 0.6

© CSIR 2007

www.csir.co.za

our future through science

Differences between SLR and LLR

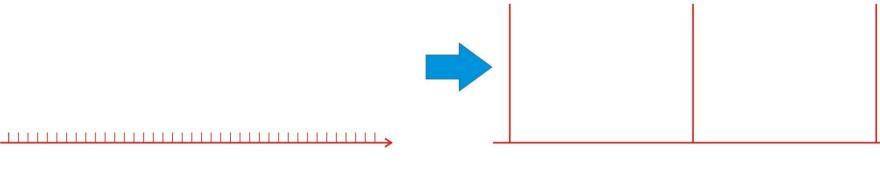

	SLR	LLR
Measured Signal		
Transmit Signal		
Timing measurement	Interval	Event
Pulse Repetition Frequency	~ 5 Hz	~ 1 kHz

Conceptual Laser Design

For LLR laser we would like:

- ~ 500-540 nm wavelength
- < 50 ps pulse length (FWHM)</p>
- M² close to 1
- 200 400 mJ per pulse
- Pulse Repetition Rate: up to 1000 Hz

General Q-switched mode-locked parameters:


- Several microjoule per pulse
- Picosecond pulse length regime
- 100's of MHz pulse repetition frequency

www.csir.co.za

Conceptual Laser Design

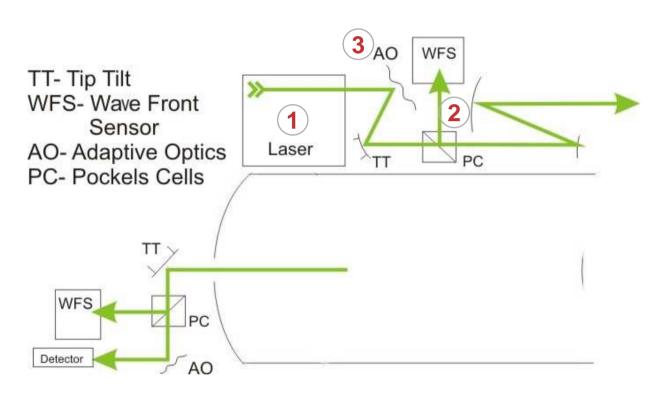
How do we get from 100's of MHz low-energy to kHz high-energy in modelocked Q-switched lasers?

Seed Laser

Final Output

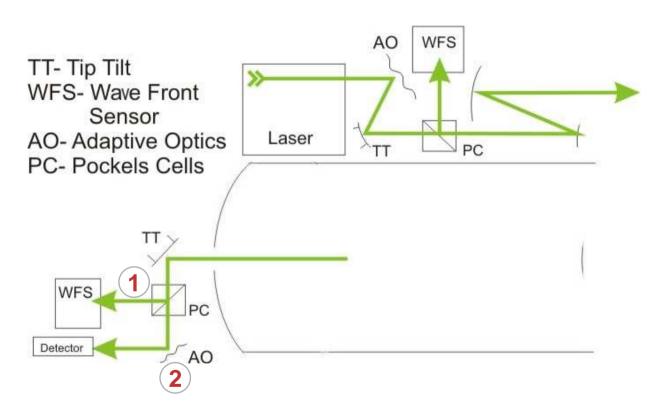
Steps:

- 1. Pulse Selection
- 2. Amplification

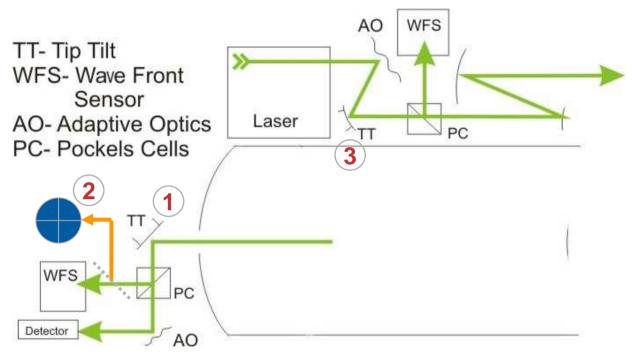

© CSIR 2007 www.csir.co.za

Proposal for new optical subsystem

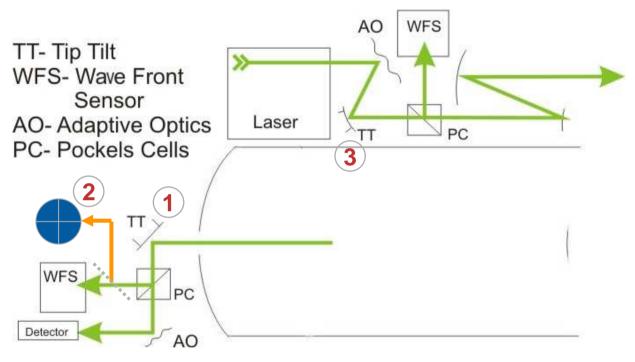
- Compact, light-weight diode-pumped laser mounted onto telescope
 - Pump diodes separately with light delivered to laser through multi-mode fibres
 - Very good beam quality
 - Own smaller telescope for outgoing beam (e.g. ~40 cm diameter)
 - High-rep-rate operation
- Adaptive optics to reduce laser divergence and field of view independent of seeing conditions.
 - Laser itself creates guide star through time gating to return from higher atmosphere
 - With a 30 cm outgoing beam, a divergence of ~0.5 arcsec could be achieved.
 - This gives a factor 4 improvement compared to 1 arcsec, much more compared to most current systems.
 - The reduced field of view would reduce noise by a similar factor
- Automatic pointing system ensures optimum overlap of laser and telescope field of view.


Proposed system: outgoing laser

- Laser with good beam quality
- Time-gated detection of wave front through laser telescope
- Adaptive optics to correct laser divergence
- Very low laser divergence
- Factor 3 to 10 improvement of intensity on moon


Proposed system: receiving

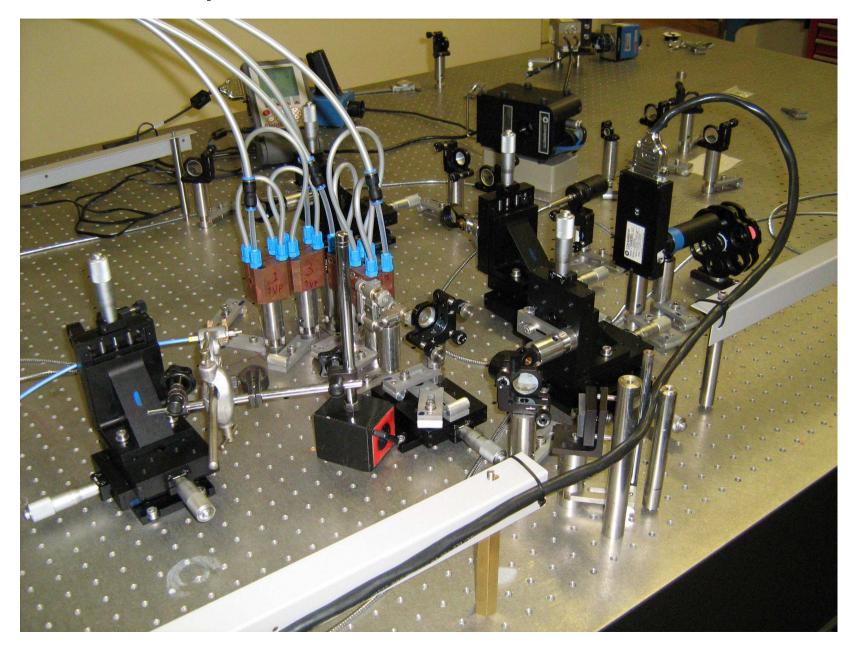
- Time-gated detection of wave front through main telescope
- Adaptive optics to improve receiving resolution
- Can significantly reduce field of view
- Factor 3 to 10 reduction of noise


Proposed system: pointing and alignment

- Tip-tilt mirror to actively fine-adjust pointing to retro-reflector
- Time-gated detection of laser direction from atmospheric far-field scattering
- Tip-tilt mirror to adjust laser pointing to main telescope
- Always perfect alignment of laser beam to main telescope

Proposed Optical Subsystem: Telescope, Laser and Adaptive optics

- Tip-tilt mirror to actively fine-adjust pointing to retro-reflector
- Time-gated detection of laser direction from atmospheric far-field scattering
- Tip-tilt mirror to adjust laser pointing to main telescope
- Always perfect alignment of laser beam to main telescope



Conclusion

- •Upsizing of current technology will not allow millimeter level accuracy
- •A new laser design for better beam quality is necessary
- •A novel 'dual-telescope' system is a feasible option
- •Adaptive optics will correct for transmit and receive path efficiencies by lowering final beam divergence
- •Automatic alignment and pointing control will significantly reduce system errors and increase accuracy

Laser Development

Laser demonstration

Telescope: as large as possible!

- 1m + Primary mirror diameter
- Astronomical / military grade mirror
- Accurate pointing to about 3 arcseconds

We do laser ranging systems redesign rather than upscaling of typical current design:

- Introduce new technologies (laser type, processing techniques etc)
- Expect factor 100 better data because of this

Telescope: We have a donor!

. Observatoire de la Côte d'Azur

our future through science

The telescope: 1m Schmidt-Cassegrain

© CSIR 2007 w

www.csir.co.za

our future through science

The Telescope II

Timeline of telescope within project

	Year two thousand and														
	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
LLR Concept Development															
Design specifications															
Laser Research and design															
Laser prototype															
Packaged Laser															
Telescope parameters															
Acquire telescope															
Telescope Refurbishment															
Mount and test laser on telescope															
Electronics Development															
Software development															
Systems Integration															
System Testing															
System relocation to Matjiesfontein															
Final testing, start of operations															

Telescope initial timeline

			2	2007			2008												
	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	
Final donation documentation etc																			
Planning for refurbishments																			
Packing, shipping																			
Installing in new building																			
Initial investigation into state of equipment																			
Refurbishment																			
Electronic systems																			
Testing of refurbishment																			

Requirements: Telescope Refurbishments

- Large closed brick building with large door- to move outside for tests
- Proper tracks- 6.5 tonnes and proper trolley cradle
- Pit between tracks within the building (nice to have)
- Extra area in building to work, set up lasers and electronics, PC's etc
- 3 phase electricity (low kW though)
- Near HartRAO and CSIR
- Semi clean room conditions
- Proper access control

© CSIR 2007

www.csir.co.za

Envisaged Role of host institution, collaboration

- Provide building + space for refurbishment, initial tests
- Help with required changes to the structure
- Very good link to start student projects from: electronics physics computer science

Option 1- Failed

Option 1- Failed

Conclusion

 Upsizing of current technology will not allow millimeter level accuracy

- •A new design for laser ranging is necessary
- •1m Telescope acquired from OCA, arrived in SA 2008
- •Initial refurbishments about 2 3 years
- •This is a long-term multi-partner project on international level
- •Operational 2014 (?) at Matjiesfontein

Latest ideas

- Get most of the equipment as standard 'off-the-shelf'helps in both availability of parts and support
- Plug-and-play approach for the whole system as far as possible
- Laser- copy the OCA design, implement dual laser system later on
- Labview for system control (Win-blows / li-nots?)

Thank you

CSIR

our future through science