Astronomical seeing conditions at Matjiesfontein as determined by optical and turbulence methods. M Nickola, HartRAO Space Geodesy Programme.

Supervisors: Prof G Djolov

Prof L Combrine

Dr I Esau

Need for new fundamental space geodetic station at Matjiesfontein

- At HartRAO pollution, cloud cover, RFI, obsolete instrumentation
- Require location for optimal scientific output infrastructure, stable ground, reduced RFI, benign atmosphere, low horizon
- All 4 major space geodetic techniques - VLBI, GNSS, Doris and S/LLR - co-located on-site

Lunar laser ranging at Matjiesfontein

One of the first major projects at Matjiesfontein – LLR

First LLR in southern hemisphere

Current LLR observatories: APOLLO, McDonald, OCA

OCA donated 1m optical telescope towards development of LLR

How does LLR work and why LLR?

- Laser pulses transmitted from
 Earth station to retro-reflector on Moon
- Round-trip time-of-flight measured
- Earth-Moon distance determined
- Earth's, Moon's structure, dynamics; Equivalence principle of GR

Turbulence and seeing

- Turbulence causes laser beam to diverge
- Turbulence adversely affects data quantity and quality
- LLR single-photon returns require excellent seeing (< 1")</p>
- Atmospheric turbulence occurs in surface layer, ABL, free atmosphere

Turbulence & seeing cont.

- Turbulence degrades astronomical seeing
- Stars not point sources but blurred, moving images

- Eddies unstable air masses acting as lenses
- Velocity fluctuations cause temperature variations that cause index of refraction variations

Seeing measurements – optical method

- Seeing monitor to consist of telescope, CCD camera, control/processing PC
- Observe stars at varying positions on sky, capture frames of varying exposure times
- Images stacked to obtain average output image PSF
- PSF depicts where photons from star have fallen
- PSF characterises imaging under non-ideal conditions atmospheric turbulence, imperfect instrument
- PSF broadened by bad seeing
- Fit Gaussian profile to PSF

Seeing measurements – optical method cont.

Determine FWHM

Compare statistical analysis of captured images with theoretical Airy function

- Airy function describes image of point source under ideal conditions – no atmosphere, perfect instrument
- FWHM corresponds to σ from normal distribution $FWHM = 2\sqrt{2\ln 2} \sigma \approx 2.355 \sigma$

Observe close binaries for calibration, verification purposes

Seeing from turbulence method

- Kolmogorov model attempts to describe perturbations to wavefront caused by variations in index of refraction
- Turbulent field described by structure function $D\phi_a(\rho) = \langle |\phi(\mathbf{r}) - \phi(\mathbf{r} + \rho)|^2 \rangle$
- Phase structure function at telescope $D\phi_a(\rho) = 6.88 \left(\frac{|\rho|}{r_0}\right)^{\frac{1}{3}}$ where r_0 Fried parameter to characterise seeing
- **C**_N² profile measured and r_0 determined –

$$r_{0} = \left(16.7 \ \lambda^{-2} \ \frac{1}{\cos \gamma} \int_{0}^{\infty} dh \ C_{N^{2}}(h)\right)^{-3/5}$$

Seeing from turbulence method cont.

- Large eddy simulation (LESNIC) large eddies resolved, small eddies modelled
- Seeing monitor and weather station to collect on-site observational data
- Meteorological data fed to LESNIC model to provide structure functions

Calculate C_N² distribution - sodar, lidar, radar data used to determine C_N² profile

Compare data from seeing monitor with model results

Outcomes

Measure astronomical seeing and
meteorological conditions at Matjiesfontein
to determine whether it is an optimal location for LLR in this respect.

Obtain quantitative measure of seeing –

- develop & implement automated seeing monitor
- deploy meteorological instruments
- use data from observations
- employ LESNIC model

Determine suitability of LESNIC for modelling seeing conditions

Outcomes cont.

- Determine relationship between seeing quality and meteorological conditions
- May be used for future seeing forecasts
- Enhanced data quantity and quality

Thank you for your time

