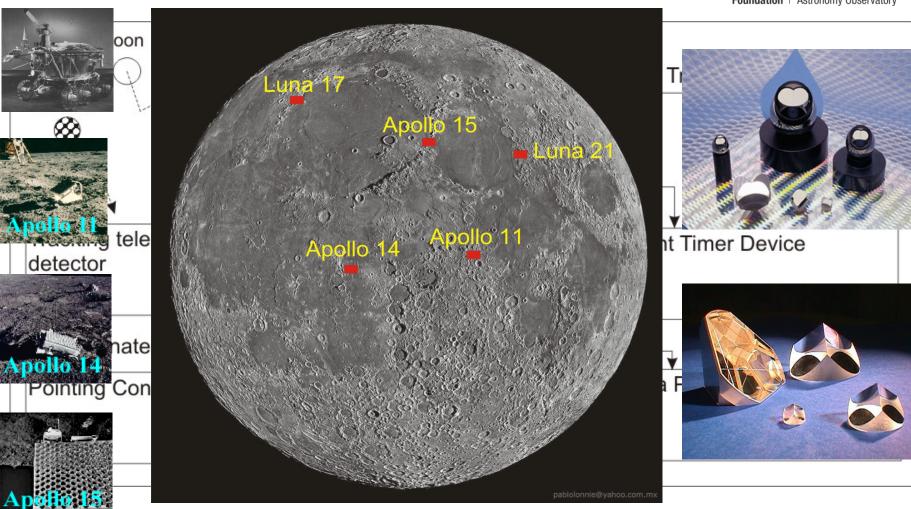
Laser System for the Lunar Laser Ranger

Roelf Botha, Ludwig Combrinck
Space Geodesy Programme, Hartebeesthoek Radio Astronomy Observatory

Thomas Varghese
Cybioms Corporation and NASA GSFC



Fundamental Motivation: LLR

Goals

Obtain state-of-the-art diode pumped solid state (DPSS) YAG lasers:

- that are capable of supporting Next Generation SLR as well as LLR
- taking into consideration all the laser ranging system engineering issues involved.

Design Specifications

Low Energy, 1 KHz laser for SLR only (Specification in

Major Features: The proposed laser has the following desirable features

Hermetically sealed **DPSS** master oscillator

DPSS regenerative amplifier producing ~0.5mJ per pulse @ 1000 Hz@ 25 ps pulses; sub-mm NP accuracy

High Energy, 10/20 Hz laser for SLR (may be used for GNSS, GEO) and LLR

Major Features: The proposed laser has the following features

Flashlamp pumped (FLP) power amplifier producing up to ~100 mJ per pulse @ 20Hz@532nm

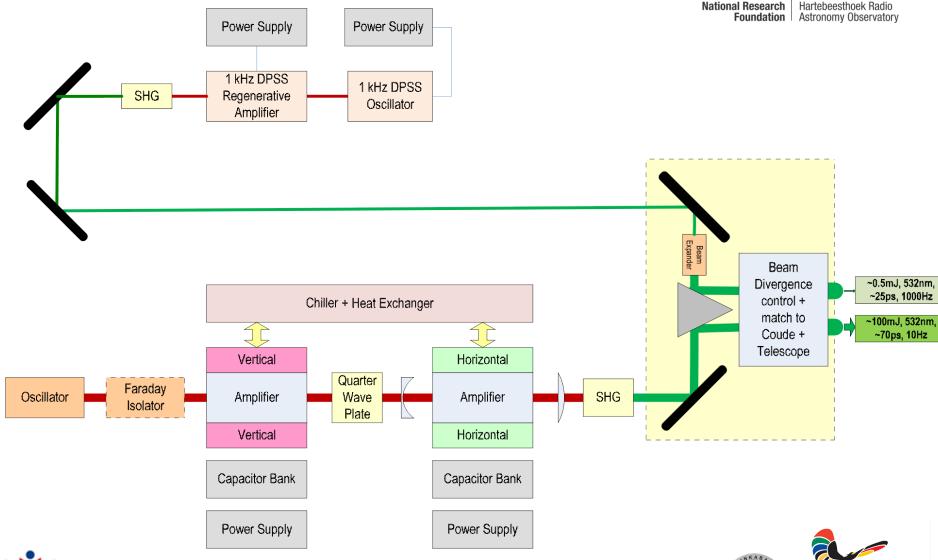
Trigger pulse with <30 ps jitter

Excellent beam pointing stability

Thermo stabilized second harmonic generator options

PC control via USB using Windows OR LabVIEW™ drivers;

Remote control via keypad



SPECIFICATIONS <1>

	SIECHICATION	15		
Model	Model 1a, kHz Laser	Model 1b, kHz Laser	Model 2	
Output energy, mJ				
at 1064 nm	~0.9 mJ	~2.5 n J	~200 mJ	
at 532 nm	~0.45 mJ	~1.3 mJ	~100 mJ	\leftarrow
Pulse energy stability (Std. Dev), % <2>				
at 1064 nm	~0.5%	~0.5%	< 0.8 %	
at 532 nm	~0.8%	~0.8%	<1.0 %	
Pulse duration (FWHM) at 1064nm, ps <3>	25±2 ps	<80±2 ps	$<80\pm3$ ps	
Pulse duration stability, ps <4>	±1	±3	±3	
Pulse repetition rate, Hz	1000 Hz	1000 Hz	10 or 20 Hz	\leftarrow
Triggering mode (Internal/External)	internal/external	internal external	internal/external	
Typical SYNC OUT pulse delay, ns <5>	-50050	-50050	- 50050 ns	
SYNC OUT pulse Jitter (Std. Dev), ns	< 0.1	< 0.1	< 0.1 ns	
Spatial mode <6>	TEM_{00}	TEM_{00}	TEM_{00}	
Beam divergence, mrad <7>	<1.6	<1.6	< 0.5 mrad	\leftarrow
Typical beam diameter, mm <8>	~3	~3	~12 mm	
Beam pointing stability, µrad <9>	<30	<30	< 50 μrad	
Pre-pulse contrast	>200:1	>200:1	> 200:1	
Polarization	linear, >100:1	lineal, >100:1	linear, vertical, > 100:1	
Laser head size $(Wx Lx H)$, mm	455 x 1035 x 242	455 x 103. x 242	453x1224x250	
Power supply size (Wx Lx H), mm		472 x 460 x 290	550x550x600	
Chiller	not required, air cooled	not r <mark>equired, air c</mark> ooled	Rate of~ 8 l/min	\leftarrow
Relative humidity (non condensing), %	Oct-80	Out-80	20-80 %	
Operating ambient temperature, °C	22 ± 2	22 ± 2	22 ± 2 °C	←
Mains requirements	100-240 VAC, single phase, 47-63 Hz	100-240 VAC, single phase, 47-63 Nz	Single phase, 208 or 230 VAC, 16A, 50/60 Hz	
Power consumption, kW	<1	<	< 2.5 kVA	
Typical warm-up time	30 min	30 min	30 min	

Schematic

Third Combined Matjiesfontein Workshop
13 April to 17 April 2013

Additional Requirements

- Beam Divergence control & Optics (Roelf / student project)
- Fast low-jitter detector with a QE of ~ 40% @ 532 nm → very high normal point accuracy on SLR and LLR and Event Timer, swappable with NASA SLR systems capable of single shot RMS < 4 ps and < 4 ps accuracy (A033-ET http://eventechsite.com/en/timing-technologies/product-created-56503)

- Optical Shutter operable at 1kHz that is capable of suppressing backscatter to the detector (Buy from Cybioms Corporation)
- Servo-system capable of sub-arcsecond pointing accuracy similar to the new NASA servo-systems (*Under developement by Ludwig*)

